El substrato físico de la visión está en el sistema visual. Este es un conjunto de órganos, vías y centros nerviosos, que permiten la captación, procesamiento y aprovechamiento de la información visual, lo cual lleva a alcanzar una percepción muy precisa del mundo físico que nos rodea.

La entrada al sistema visual es el globo ocular. En este órgano ocurre el proceso de transducción de la información derivada del campo visual. Es decir, la energía electromagnética del estímulo representado por la imagen, se transforma en información codificada que se envía a centros nerviosos donde es procesada.

Visto lateralmente desde el exterior, el globo ocular aparece como una esfera deformada, rodeada de una membrana blanca, la esclerótica, que en la parte anterior del ojo es transparente. Esta zona transparente tiene la forma de un disco ligeramente curvado, la córnea, a través del cual los rayos luminosos son orientados (refracción) para que caigan exactamente en la retina.

Detrás de la córnea existe una cavidad, la cámara anterior del ojo, llena de un líquido nutritivo para la córnea, el humor acuoso. Hacia el interior del ojo, esta cámara está limitada por una membrana circular de tejido muscular, el iris, que deja en su centro una apertura circular, la pupila. Gracias a su musculatura, el iris puede regular el diámetro de la pupila regulando así el paso de luz que llega a la retina.

Detrás del iris y de la pupila excite un lente, el cristalino, que permite el enfoque fino de la imagen en los fotorreceptores de la retina. Pero la luz, después de atravesar el cristalino debe cruzar una segunda cavidad o cámara antes de alcanzar a la retina. Esa cámara está llena de un líquido llamado humor vítreo y su parede esta limitada por una membrana, la retina.

La retina presenta varias capas celulares en una de las cuales se encuentran los fotorreceptores, los conos y los bastoncitos. En ellos ocurre el proceso de transducción. En otra de las capas se encuentra las células ganglionares que se comunican con las células receptoras a través de las células bipolares. Son los axones de las células ganglionares los que constituyen el nervio óptico, que sale de cada globo ocular.

Los nervios ópticos alcanzan al quiasma óptico, estructura en la que se produce el cruce de parte de los axones de las células ganglionares al lado opuesto. Los axones que salen del quiasma óptico, forman los llamados los tractos ópticos los cuales se dirigen a los tálamos ipsilaterales correspondientes. Alcanzan a los ganglios geniculados laterales de dichos núcleos. Los axones que llegan al tálamo hacen relevo de la información en neuronas talámicas. Estas, a través de sus axones, inician una vía que va a termina en la corteza cerebral ipsilateral del polo occipital. Es el área visual primaria o corteza estriada o área V1.


 

La retina

  1. Corte de la retina
  2. Epitelio pigmentario
  3. Cono
  4. Bastoncito
  5. Célula horizontal
  6. Célula bipolar
  7. Célula amacrina
  8. Célula ganglionar
  9. Nervio óptico
  10. Capa nuclear externa
  11. Capa plexiforme externa
  12. Capa plexiforme interna
  13. Capa de las células ganglionares
  14. Estímulo luminoso

 


Los diversos tipos de células de la retina están organizadas en capas:

  1. La capa pigmentada. Es la más externa (capa más alejada del centro del globo ocular) y corresponde un epitelio pigmentado debido a que sus células tiene melanina. Esta capa cumple importantes funciones: absorbe el exceso de luz, evitando el efecto de su reflejo; renueva los fotopigmentos y fagocita los discos de los fotorreceptores, que deben ser recambiados a alta velocidad.
  2. La capa de los fotorreceptores. Los conos y los bastoncitos son las células sensoriales que transducen la acción de las ondas luminosas que forman la imagen. Esta capa se ubica al interior de la pigmentada. Sin embargo, la distribución de los receptores en la retina no es homogénea. En la especie humana, existe una región en ella donde se ubica la más alta concentración de conos, es la fóvea. Por ello, la imagen que cae exactamente en ella proporciona una visión más clara lo que significa que las imágenes que caen fuera de ella se verán con menos claridad. En nuestra especie existe sólo una fóvea en cada globo ocular, ubicada en el centro de la retina. La mayoría de los mamíferos no tiene fóvea pero en algunos animales, como las aves y los caballos se describen dos fóveas por ojo.
  3. La capa de las células bipolares. Estas células son interneuronas que conectan a las células sensoriales con las células ganglionares. Hacia la región externa de la retina hacen sinapsis con las células sensoriales y con otro tipo de interneuronas, las células horizontales. La zona donde se dan estas interacciones se presenta como una capa que ha sido llamada la capa plexiforme externa. Viene, entonces, inmediatamente por dentro de la capa de los fotorreceptores. Por el otro extremo, las células bipolares hacen contactos con las células ganglionares y con otro tipo de interneuronas, las células amacrinas. La capa donde se dan estas interacciones es la capa plexiforme interna.
  4. Capa de las células ganglionares. Viene a continuación de la anterior. Los axones de estas neuronas forman el nervio óptico.  

La luz que viene entonces en la imagen, cae sobre la retina pero debe atravesarla desde el interior hacia el exterior, hasta alcanzar a la capa de los fotorreceptores. Estos responden desinhibiendo a las bipolares, lo cual activa a la células ganglionares.

 

Fototransducción

En la membrana del disco de la célula fotorreceptora (cono) se ubica el pigmento rodopsina (11-cis retinal + opsina). Este pigmento es estimulado por la luz, lo cual provoca la activación de una variedad de proteina G, la transducina.

La transducina activada estimula a la fosfodiesterasa, enzima que provoca la hidrólisis de c GMP, reduciendo, por lo tanto, su concentración. Este mensajero mantiene abierto a los canales al Na+, ubicados en la membrana plasmática del cono. Esto significa que en la obscuridad, los canales a ese ión permanecen abiertos, por lo cual la célula se mantiene en un cierto nivel de despolarización. A esa corriente constante de sodio que se observa en ausencia de luz, se le llama corriente obscura.

Al cerrarse lo canales por efecto de la luz, el cono se hiperpolariza, lo cual provoca una disminución de la liberación del neurotransmisor inhibidor que se ha estado liberando constantemente en el obscuridad y que mantiene bloqueada a las células bipolares. Estas son entonces estimuladas por disminución de un efecto inhibidor y responden despolarizándose, generando entonces un potencial receptor.  

 

Aviso legal | Política de privacidad | Mapa del sitio
Página creada y editada por Fresia Quintana Jara Profesor de Estado en Biología y Ciencias Universidad de Chile